Kevin A. Reiss

Education

Dartmouth College Hanover, NH

Ph.D. IN Physics

Jun 2025 - Present

• NSF Graduate Research Fellow and Presidential Fellow

Boston University Boston, MA

B.A. with honors in Physics

Sep 2018 - May 2022

- College Prize (highest honor in department)
- GPA: 3.99/4.00, Summa Cum Laude

Publications

- Kevin A. Reiss and David K. Campbell, "The Metastable State of Fermi-Pasta-Ulam-Tsingou Models", Entropy, vol. 25, no. 2. 2023.
- Kevin A. Reiss, "The Metastable State of Fermi-Pasta-Ulam-Tsingou Models", Senior Honors Thesis. 2022.
- · James Rohlf and Kevin Reiss, "ElectroDynamics: A Novel Computational Approach", Wolfram Media. 2021.
- S. D. Pace, K. A. Reiss, and D. K. Campbell, "The β Fermi-Pasta-Ulam-Tsingou Recurrence Problem", Chaos, vol. 29, no. 11. 2019.

Research

Quantum Benchmarking: Random Circuits

Dartmouth College

ADVISOR: PROF. JAMES WHITFIELD

Sep 2025 - Present

- Constructing and comparing different models of random quantum circuits
- Evaluating benchmarking models like Quantum Volume against performance on problems like Hamiltonian simulation

Fermi-Pasta-Ulam-Tsingou Problem

Boston University

ADVISOR: PROF. DAVID CAMPBELL

Feb 2019 - May 2022

- Explored FPUT recurrences in the β -FPUT model, using a combination of analytical and numerical techniques
- Performed statistical analysis on data derived from symplectic integration of a Hamiltonian system
- · Published and presented results with implications on the equipartition theorem, and the metastable state of localized systems
- · Mentored undergraduate researchers through REU programs, honors theses, and introductory research

Experience _____

ResCon Technologies Columbus, OH

MACHINE LEARNING ALGORITHM DEVELOPER

Sep 2022 - Jun 2024

- · Led a small team to improve accuracy during GPS-denied inertial navigation, resulting in a provisional patent
- Developed novel algorithms to implement Next-Generation Reservoir Computing on edge hardware
- Researched systems of interest to discover use cases of min-data machine learning

Wolfram Research Champaign, IL

MACHINE LEARNING DEVELOPER INTERN

Jun 2022 - Sep 2022

- · Trained a neural network to solve partial differential equations using physically motivated methods, with minimal training data
- Formally presented and disseminated research and results

Skills.

Programming Python, Mathematica, Git, **E**T_EX, Julia, Fortran, Matlab, Java

Languages English (native), French, Spanish

Honors & Awards

Graduate Research Fellowship, National Science Foundation, 2025	National
Presidential Fellowship, Guarini School of Graduate and Advanced Studies, 2025	Dartmouth
College Prize for Excellence in Physics, Boston University College of Arts and Sciences, 2022	BU
$\Phi { m BK}$ (Phi Beta Kappa) Inductee, Phi Beta Kappa, 2022	National
Harold C. Case Scholarship, Boston University Office of Fellowships and Scholarships, 2021	BU
Goldwater Scholarship, Barry Goldwater Scholarship and Excellence in Education Foundation, 2020	National
Provost's Scholars Award, Boston University Office of the Provost, 2020	BU
Presidential Scholarship, Boston University Office of the President, 2018	BU

Presentations _____

May 2022	"The Metastable State of Fermi-Pasta-Ulam-Tsingou Models", Honors Thesis Oral Defense	Boston, MA
Mar 2022	"Timing of the Fermi-Pasta-Ulam-Tsingou Metastable State", American Physical Society	Chicago, IL
Mar 2021	"The Fermi-Pasta-Ulam-Tsingou Metastability Issue", American Physical Society	Online
Aug 2020	"Metastability and the Fermi-Pasta-Ulam-Tsingou Lattice", BU Physics Research Opportunities	Online
Mar 2020	"Destruction of Fermi-Pasta-Ulam-Tsingou Recurrences", American Physical Society	Online
Oct 2019	"The β Fermi-Pasta-Ulam-Tsingou Recurrence Problem", BU Undergraduate Research	BU Metcalf
OCI 2019	Opportunities Program	Ballroom

Leadership & Teaching _____

Treasurer, Dartmouth BridgeUSA	Sep 2025 - Present
Learning Assistant, BU PY405/PY406: Electromagnetic Fields and Waves I & II	Sep 2020 - May 2022
Treasurer, Boston University's Robotics and Ambient Intelligence Labs	Sep 2020 - Sep 2021
Research Mentor, Research In Science and Engineering (RISE)	Jul 2021 - Aug 2021
Mentor, Wolfram Summer Camp	Jul 2021
Ambassador / Mentor, Boston University Physics Research Opportunity (REU)	May 2020 - Aug 2020
Mentor, Physics PeeRs for Incoming Student Mentorship Program (PRISM)	Aug 2020 - May 2022
Section Leader / Member, Boston University Marching, Pep, Scarlet, and Concert Bands	Aug 2018 - May 2022

Committees _____

2021-22 **Harold C. Case Member**, Provost's Faculty Teaching Awards Committee

BU

Classwork _____

PHYS116	Quantum Information Science, Prof. James Whitfield; Dartmouth	Spring 2026
PHYS90	Intermediate Quantum Mechanics, Prof. Chandrasekhar Ramanathan; Dartmouth	Winter 2026
ENGS121	Implementations of Quantum Information, Prof. Mattias Fitzpatrick; Dartmouth	Grade: HP
PHYS100	Mathematical Methods for Physicists, Prof. Rufus Boyack; Dartmouth	Grade: HP
PY580	Machine Learning for Physicists, Prof. Pankaj Mehta; BU	Grade: A
PY502	Computational Physics, Prof. Anders Sandvik; BU	Grade: A
PY511	Quantum Mechanics I, Prof. Shyamsunder Erramilli; BU	Grade: P
PY541	Statistical Mechanics, Prof. Claudio Chamon; BU	Grade: A
MA561	Methods of Applied Mathematics I, Prof. Gene Wayne; BU	Grade: A
PY452	Quantum Physics II , Prof. Ken Lane; BU	Grade: A
EK103	Computational Linear Algebra, Prof. Kamal Sen; BU	Grade: A